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Facilitating Students' Reasoning 0
with Causal Explanations and Visual
Representations
arianJ.Relser, Mlhaelaney,MassMC.,Lovett adDanlelY.Klmberg , - . ,ode
Princeton Unersty ... t. Codes
CognaTve Science Laborutory nd o r
221 Nassau Steet
Prtneeton. NJ 08542

Abstract

This paper reports our study of students learning to program using GIL. the
Graphical Instruction In LISP intelligent tutoring system. GIL Is designed to
explore the construction of explanations from problem-solving knowledge and the
use of visual representations n problem solving. We first present a brief overview
of GIL, then describe analyses of students learning to solve simple programming
problems using GIL Our initial data address two questions: (1) Are the
explanations provided by GIL effective in guiding students' reasonng? and (2) Are
students able to learn to program using graphical representations (Le.. what
benefits are provided by this representation of programming)?

Introductla

We examine students learning to use GIL. an Intelligent tutor for programming. GIL
constructs explanations from Its problem-solving knowledge and provides visual
representations to facilitate students' problem solving (Reiser. Klmberg. Lovett. &
Ranuey. In press). We present evidence to examine whether GIL's explanations are
effective in guiding students* reasoning. and to determine the benefits of its graphical
representation in problem solving.

The GIL Tuto

GIL tutors students learning to write simple LISP programs, employing a problem solver.
an explainer, a response manager, and a graphical interface. GIL explains Its own
reasoning. and provides a visual representation to aid problem solving.

Deiving Explanations from Problem Solving Rus
Our central aim is to build a rule-based tutor that can construct explanations directly
from the content of its problem-solving rules. In OIL, the knowledge used to explain a
step in a programming solution Is the same knowledge used to reason about it. This
method contrasts with other rule-based tutoring systems in which English text for
explanations is associated with rules and plans, requiring explanations to be
Individually prepared for each situation (e.g.. Anderson. Boyle. & Reilser. 1985: Johnson
& Soloway. 1987). GIL contains a problem-solving model that makes causal knowledge
about programming operations explicit, and an explanation component that constructs
hints and error feedback from its problem-solving knowledge.

90 2" 034
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The OIL problem solver Includes a set of of reasoning rules and plans. Each rule
contains a description of the properties of new Intermediate data products that a given
LISP step creates. The tutor understands how each step transforms the data so that It
might guide the student along novel chains of reasoning. For example. It to not sufficient
for the rules to encode the knowledge that taking the first of a reversed list will return the
last element: the problem solver must allow the tutor to communicate the rauonale. Le..
reversing the list causes the last element to become the first, enabling the use offirst to
edract it. To represent this knowledge. each rule describes the properties of the steps
input and output. Thus, the problem solver not only knows what step to take. but also
why the step is useful. Inferences of this sort can be used to explain why a suggested step
is strategic or why a student's step Is in error.

GIL constructs explanations in response to errors, bad strategies. or requests for a hint.
The GIL explainer draws upon the same knowledge base of rules and plans used by the
problem solver. If a hint is requested, the explainer selects a rule that best continues the
student's problem solving. suggests the step represented in the rule, and uses the
properties of the input and output data to explain why the step is effective. Upon a
student's error. GIL generally finds the closest matching rule and uses the description of
the Input and output to explain how the student's step is discrepant. GIL handles legal
errors, in which a student's programming step does not correctly manipulate the selected
data, and strategic errors. In which the step is a legal LISP operation but is not useful. GIL
responds to errors without any bug catalog, dynamically constructing explanations by
comparing sudents' steps to its own reasoning.

Visual WepmeentaUona to Aid Reamoning
A dllTlculty in many problem-solvig domains is that the syntax of a solution does not
reflect the reasoning process required to construct it. GIL was designed to provide a
representation for students to communicate with the tutor that was more congruent with
the reasoning required in the task (cf. Collins & Brown, 1988). In GIL's graphical
programming Interface, students build a program by connecting objects representing
program constructs into a graph. rather than by defining LISP functions In their
traditional text form (eiser. Frledmann. Gevins, Kimberg. Ranney. & Romero. 1988).
Students take a step by selecting a LISP function from the menu and specifying its input
and output. Hence, all intermediate products are explicit in the program graph. Rather
than specifying only a sequence of operations. such as *the first of the rest of (a b c CO," the
student indicates the sequence of transformations. e.g.. "get (b cd) by taking the rest of a
b c 41, extract b by taking the first of (b c c. A complete program consists of a graph
specifyln how a chain of functions transforms the Input data to achieve a particular
type of output. Figure I displays a partial solution for the program roider (which rotates
the last element of a list into the first position). The use of intermediate products makes
the process of combining steps more explicit and enables tutoring on individual steps in
the solution. With this graphical representation, the structure of the solution mirrors
the planning required for program construction. Reasoning chains are represented by
biranches .of the graph used to achieve the final goal. Another advantage Is that the
intermediate reasoning products are made explicit, so students remain aware of data
manipulations as they construct the program. This helps students understand how
particular algorithms work, and more generally, helps them learn the logic of embedding
functions within other functions to construct an algorithm. Finally, the GIL interface
enables students to plan In a varlety of directions. GIL's problem solver contains both
rules for reasoning forward from the given data toward the goal. and rules for reasoning
backward from the goal toward the given data.
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You need to eventually connect to
(s b 4 (A b c) cotains the first few
Oleients of (a b e ).

You might start by using a function tg;ves yeu(debe). Youcanuse
I de b a) to aventualla extact (bl .

ad b b 4) is a list with the reverse of6=b) at the eWW.

labcd4

llgur. 1. A snapshot of Cns Interface en route to a solution for the problem nma.
Including the firt level of a hint.

The nterface supports both types of reasoning, and provides a distinct visual
representation that mirrors the direction of reasoning. The system supports reasoning
about steps In whatever temporal order is natural for the student, even though It may not
match the backward, left-to-right order of the final soluUon's surface form. More details
about the pobem solver. explainer, and Interface are presented in Reiser et &l (in press).

Empirical Investgatios of G

We Investigated the effectiveness of GIL's explanations and visual representations by
using GIL to teach simple LiSP programming constructs to nine students. All students
were Princeton University undergraduates who had never taken a programming coure.

Proceds
The subjects read a short text describing the data structures (atoms and lists). how LSP
functions work. how to combine functions Into a program. and how to use a chain of
functions to describe a general algorithm: The text presented the functions first rest.
cons. list append. last, and reverse. Each function was Illustrted with Its CI= Ion
shown operating on some Input. producing a corresponding output. The text was adapted
from Chapters 1-2 of Essenllal USP (Anderson. Corbett. & Relser. 198. The OIL ted
substituted graphical representations for the text-based representations and omitted
discussions of the syntax for defining functions and referring to variables,
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Subjects solved 14 to 15 problems that required generating programs to (a) extract
items from lists. (I) manipulate lists, and (c) combine atoms and lsts. The solutions
varied from three to seven steps. Most problems contained a variety of solutions. For
rotater. there are aix unique solutions, but an average of 78 different paths that a student
working with GIL can take to each solution. After each subject read the text's first
section. the experimenter demonstrated how to construct a program using GIL. The
experimenter showed how to take forward and backward steps, how to select Input or
output n the graph, how to type In new data. how to cancel partial and complete steps.
and how to request hints (like the one shown in Figure 1). All subjects had little difficulty
learning to use GIL No subject asked the experimenter for assistance with the Interface
beyond the ten-minute demonstration.

speed of solulm
Students read the text and completed the problems in under two hours. This is less than
half the time that non-tutored subjects typically spend working on these two chapters.
There are many reasions to expect such a difference. Direct comparisons with subjects
working without a tutor are difficult to make, however, because the curriculum differs In
standard learning situations. LISP students spend considerable time mastering the
syntax of defining functions and using variables. To minimize the load of new material.
students are given a full chapter of problems to familiarize them with the data structures
and simple LISP functions before introducing funcuon definition. in contrast. GIL
students are Immediately introduced to the semantics of LISP functions while defining
their own functions. Comparisons of overall solution time may be misleading.
therefore, because the GIL subjects solve fewer problems (since most of Chapter l's
problems are unnecessary) and are given simplified versions of function definition and
variables, which form graphical, rather than textual, structures. Nevertheless. It is
Informative to compare performance on a connon set of five problems from the end of
the furictim defntion chapter. These Include the rotater problem and others of similar
complexity. The GIL subjects had been working with LISP at this point for
approximately 1.5 hours, and the non-tutored subjects had been working with LISP for
about 4 hours. The non-tutored subjects worked In a standard Interactive LISP
environment. Including a simplified screen editor to modify function definitions. These
subjects had already defined at least S functions, mastering the necessary syntax. The
difficulties of the last five problems consisted in planning an algorithm to manipulate
the data to produce the desired result. The GIL subjects solved these problems much faster
than the non-tutored subjects: an average of 15 minutes versus an average of 58 minutes.

One poselb ity b that the GIL subjects solved the problems more quickly because they
asked for enough huts as nrceived enough error feedback so that GIL essentially told
them what steps to take- However. the quantity of explanation does not support this
Interpretation. Subjects made only .4 errors/problem and requested only .3
hs/grsblem. ~Alhough the error feedback and hints certainly helped the subjects, the
four-told speedup cannot be attributed to GIL solving most of each problem for them.
More important factors would seem to be the problem-solving environment and the
effectiveness of cogent. Umely explanatiom

Direction of Ream g
The most striking and Important finding in these results concerns the use of forward and
backward reasoning Students were always free to work forward from given data toward
any of the goals, or backward from a goal toward the given data. The Instructions
emphasized this freedom to work in any direction. We analyzed the number of forward
and backward steps, excluding 'achieve* steps that completed a branch Ohinng a gie
with a goal). Subjects showed a strong reliance on forward reasoning. taking 95% of non-
achieve steps In the forward directJon. Backward steps were used n only 10% of the
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problems, and no more than once per problem. Of the backward steps. 92% occurred
using LISP combiner operations. thus decomposing the problem nto two subgoals. These
goal decomposition steps were typically the first step taken by the subject and often
followed a hint from GIL to use such a step. When backward decomposition was
employed, subjects then worked entirely forward to achieve those goals, eschewing
further backward steps.

It Is interesting to contrast this directionality with the surface form of final solutions
in standard. textual LISP. The code for the solution begun in Figure 1. with the variable
Its substituted for the example (a b c d). would be (cons (first ftst IUs) (reuevse (rest feuerse
110)). The order of the functions in the surface form of the code corresponds to a
complete backward (top-down) solution, coding cns before first and frst before IasL If
subjects' reliance on forward steps In GIL accurately represents their reasoning, then
novices do rot appear to plan their solution In the order in which the functions appear In
the solution. Forcing subjects to enter their code In the outside-in, left-to-right fashion
required by standard LISP interpreters forces students into a difTerent strategy than the
one in which they can work through an algorithm In the order in which It transforms the
data. Thus. a student forced to work within the surface LISP code may be forced to reason
in terms of the final solution, rather than the planning necessary to construct the
solution. Although expert programmers typically write LISP programs top-down and
left-to-right (Anderson. Farrell. & Sauer. 1985). novice reasoners require more search
as they fall back on weak methods (Anderson. 1987; Larkin. McDermott. Simon, &
Samon 1980). A tutor that facilitates this search by providing guidance as the student
plant is more helpful than a tutor that forces the student to plan entire chains of
reasoning before communicating them to the tutor.

Our observations of novice programmers working with human tutors support these
fidings Although the tutors encourage students to try portions of their solution on the
computer or to enter portions into the editor, students are reluctant to do this. These
students often work through the alga'-inhm on paper, or verbally with the tutor. using
forward reasoning until a subgoal is satisffid (e.g., getting (a b d in rotater). Then.
students are willing to enter the newly planned solution, and can do so in the left-to-right
order of the required surface fora.

The forward reasoning available in GIL enables students to reason In temporal order
about a programs data transformations. Given the domain's available operators.
general techniques like means-ends analysis would be more effective reasoning from
given data to the goal than via backward reasoning, because the search is much more
constrained. Sine novces generally rely on these weak methods. It helps to provide a
repmpsentaion congruent with this reasoning, so that GIL can provide assistance as the
student plans each step. Tutorial guidance is presented precisely on the required step.
rather than being delayed until the student has entered the results of the reasoning. The
representation also reduces the memory load of keeping track of the properties of the
manipulated data.

brw Feedback aMI mts
Students made more legal errors (in which the chosen function and inputs did not retun
the Indlcated output) than strategic errors (legal but useless LISP operations): 83% versus
17%. One interpretation of this finding is that subjects were able to easily generate
algorithms for these programs, and that most of the necessary learning Involved the
operators" semantics, with most errors occurring when operators were misunderstood.
However. much of the non-tutored subjects' floundering concerned finding a workable
algorithm to satisy the problem constraints. rather than confusions about the
operators. A more likely interpretation. then. is that the GIL environment facilitated
algorithm planning, greatly reducing the number of non-strateglc steps.
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Let us consider whether the causal explanations constructed by GIL were effective.
GIL* explainer selects which properties of each object manipulated in a step should be
described. and a simple generator constructs sentences to describe each proposition. Do
students benefit from these explanations?

Subjects generally understood and accepted GILs feedback. Subjects were able to
Immediately fix approximately 50% of the errors described by GIL. Otherwise, subjects
either tried a different step. produced another error, or asked for a hint and then took a
correct step. GIL's error feedback contains two levels of help. The first points out what is
wrong wth the student's step (e.g.. 'remember the input to append must be a lt) and the
optional second level contains specific suggestions about how to fix the step (e.g.. y
using (d) Instead. Subjects generally found the first level of help sufficient; they asked
for more Aformation in only 12% of the errors. Finally, although subjects did not "
regularly equest hnL4. they generally tried to follow those requested. Subjects
a iempted to lmIsnedat*y follow 74% of GIL'S hints, and were successful in 69% of these
attempts.

GIL's environment appears to enhance useful feedback with Its explicit intermediate
reasoning products. Tutorial feedback can be targeted to the particular parts of a step
that is in error. This has been problematic in tutors that treat the surface code (e.g..
Johnson & Soloway. 1987; Reiser. Anderson, & Farrell. 1985). For example, If the
student uses an inappropriate list-constructing function to combine two products, one of
which is the output of the function last the semantic confusion could be in the nature of
the list combiner or in the type of product output by lasL GIL makes all inputs and
outputs explicit, so tutorial feedback is focused on the particular properties of the data
that are discrepant. This tends to prevent errors from compounding. rendering the
problem of diagnosis more tractable.

Flxabity doL
GIL allows more flexibils" than working on a program in top-down, left-to-right order.
There are several ways in which GIL lets the student choose the part of the problem on
which to work: forward and backward reasoning, selecting any open goal. deleting
within a step, and deleting correct steps.

We have discussed the importance of enabling students to reason both forward and
backward. Students also take advantage of the opportunity to select which open path to
focus on. For example, after a backward cons step in rotaler. subjects might work on
achieving the fr input. 4, or the other input. (a b c. GIL does not enforce a left-to-right
order - students can choose either goal. Furthermore, once a student starts working
toward a goal by taking a forward step. OIL does not force the student to achieve that goal
before working on the other goal. Whether this flexibility has a pedagogical benefit is an
empirical question that our data do not specifically address. However. our subjects
cearly take advantage of this flexibility. Subjects do not always work on the Inputs in
left-to-right order. There is some tendency to tackle simpler goals before more difficult
goals. although subjects sometimes alternate between two goals. Work on one path may
lead to the realization that work on another path is needed. This flexibility means that
students am not forced to complete a path before additional aspects of the solution are
constructed that may constrain choices in the current path.
GIL also allows the student to delete partial or complete steps. Many times. a subject

begins a step, then deletes some or al of the partial step. Furthermore, In appr mately
one problem per subject. one or more completely correct steps were deleted. Although
subjects understood that any step completed and accepted by GIL is useful, they
occasionally decided to undo a correct step and alter that part of the solution. Without
verbal protocols, we cannot be sure of why the subjects changed strategies. However.
retrospective Interviews indicate that. after starting on one solution path. some subjects
realized a 'better wa to solve the problem, deleted some of their previous work. and
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then pursued their newly discovered strategy. Other subjects mentioned that they became
confused about how to continue a current path. but saw another way to solve the problem,
and so deleted steps to enable this alternative solution. GIL supports such strategic
alterations, which subjects appear to find useful.

The grain size of interaction Is coarser In GIL than In the CMU LISP Tutor (Corbett.
Anderson. & Patterson; Reiser et al. 1985). In GIL, the student selects a function and
specifies its inputs and output before GIL analyzes the step. The CMU LSP Tutor
responds to each word typed by the subject: there Is no opportunity to reason about the
arguments for a function while selecting It. since the tutor responds to the function
before the student specifies the arguments. Our GIL subjects! relatively frequent use of the
delete key to cancel partial steps indicates that subjects are able to catch many of their
minor errors, thus benefiting from the larger units of Interaction. Furthermore. the
students' ability to change strategies, even at the expense of undoing correct steps, gives
them greater control of the interaction. Finally, the specificaUon of the explicit inputs
and outputs Is particularly Important for providing compelling feedback, because the
tutor can use them to explain why a step is in error. This use of explicit data avoids
situations that sometimes cause students to complain: "It doesn't even know where I
want to go with this. why is it already telling me Fm wrong"

Coclusoms

These preliminary investigations have revealed several promising aspects of our GIL
system. Students rely heavily and effectively on the forward reasoning allowed by GIL
The explicit representation of intermediate products helps students reason successully
about their algorithms and construct general solutions using specfic examples. The
graphical programming representations appear easy to learn and further facilitate
students" reasoning. Finally, our results suggest that dynamically constructed causal
explanation and visual media offer promising pedagogical advantages - not only for
programming, but for many domains in which people design a solution to sat* various
problem constraints.
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